{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Générer des variables aléatoires" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## runif\n", "La fonction `runif` permet de générer des pseudo-variables aléatoires indépendantes entre deux bornes\n", "`runif(n=combien, min, max)`" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "3.35023581283167" ], "text/latex": [ "3.35023581283167" ], "text/markdown": [ "3.35023581283167" ], "text/plain": [ "[1] 3.350236" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(1,0,10)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.762836940586567
  2. \n", "\t
  3. 0.604817938059568
  4. \n", "\t
  5. 0.0636072147171944
  6. \n", "\t
  7. 0.052814619615674
  8. \n", "\t
  9. 0.429516698000953
  10. \n", "\t
  11. 0.327015534741804
  12. \n", "\t
  13. 0.425390120828524
  14. \n", "\t
  15. 0.093060856917873
  16. \n", "\t
  17. 0.203973314259201
  18. \n", "\t
  19. 0.0420023950282484
  20. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.762836940586567\n", "\\item 0.604817938059568\n", "\\item 0.0636072147171944\n", "\\item 0.052814619615674\n", "\\item 0.429516698000953\n", "\\item 0.327015534741804\n", "\\item 0.425390120828524\n", "\\item 0.093060856917873\n", "\\item 0.203973314259201\n", "\\item 0.0420023950282484\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.762836940586567\n", "2. 0.604817938059568\n", "3. 0.0636072147171944\n", "4. 0.052814619615674\n", "5. 0.429516698000953\n", "6. 0.327015534741804\n", "7. 0.425390120828524\n", "8. 0.093060856917873\n", "9. 0.203973314259201\n", "10. 0.0420023950282484\n", "\n", "\n" ], "text/plain": [ " [1] 0.76283694 0.60481794 0.06360721 0.05281462 0.42951670 0.32701553\n", " [7] 0.42539012 0.09306086 0.20397331 0.04200240" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(10,0,1)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "On peut insérer maintenant les valeurs générées à l'intérieur d'un vecteur" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "x<-runif(100,0,1)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Ou les insérer à l'intérieur d'une matrice" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
0.5396110010.43703539 0.85709912 0.4599631 0.97466830 0.9150659 0.1251427 0.1800253 0.63296958 0.1277790
0.9692001720.98869122 0.45878880 0.2725860 0.58830241 0.7808764 0.2056756 0.6443141 0.82069732 0.1994270
0.1618601050.44683774 0.05306833 0.3773334 0.75579931 0.1784268 0.3055089 0.4147207 0.43887943 0.6040850
0.4465214480.54748316 0.92775225 0.9982479 0.54972412 0.6394982 0.6864430 0.9867912 0.03091283 0.5808925
0.0071074720.02445618 0.35345890 0.4459476 0.77903144 0.4392217 0.8644656 0.3406485 0.56053496 0.4633779
0.9631989630.40298549 0.56838054 0.8158883 0.03108763 0.7979690 0.6087287 0.5747714 0.07915931 0.4372559
0.5790666000.34913192 0.23066770 0.2059267 0.41230033 0.7082100 0.2880309 0.9337467 0.77597654 0.8853603
0.1657052900.74011543 0.33763606 0.1456844 0.56672791 0.2197435 0.1583491 0.2270206 0.06134143 0.2939507
0.5949057920.27719153 0.37522597 0.8297370 0.49838097 0.3884056 0.3239845 0.1054112 0.80395329 0.1680158
0.3752494450.84355537 0.38782100 0.8637450 0.70958528 0.3343178 0.3899539 0.6956865 0.90822088 0.8057296
\n" ], "text/latex": [ "\\begin{tabular}{llllllllll}\n", "\t 0.539611001 & 0.43703539 & 0.85709912 & 0.4599631 & 0.97466830 & 0.9150659 & 0.1251427 & 0.1800253 & 0.63296958 & 0.1277790 \\\\\n", "\t 0.969200172 & 0.98869122 & 0.45878880 & 0.2725860 & 0.58830241 & 0.7808764 & 0.2056756 & 0.6443141 & 0.82069732 & 0.1994270 \\\\\n", "\t 0.161860105 & 0.44683774 & 0.05306833 & 0.3773334 & 0.75579931 & 0.1784268 & 0.3055089 & 0.4147207 & 0.43887943 & 0.6040850 \\\\\n", "\t 0.446521448 & 0.54748316 & 0.92775225 & 0.9982479 & 0.54972412 & 0.6394982 & 0.6864430 & 0.9867912 & 0.03091283 & 0.5808925 \\\\\n", "\t 0.007107472 & 0.02445618 & 0.35345890 & 0.4459476 & 0.77903144 & 0.4392217 & 0.8644656 & 0.3406485 & 0.56053496 & 0.4633779 \\\\\n", "\t 0.963198963 & 0.40298549 & 0.56838054 & 0.8158883 & 0.03108763 & 0.7979690 & 0.6087287 & 0.5747714 & 0.07915931 & 0.4372559 \\\\\n", "\t 0.579066600 & 0.34913192 & 0.23066770 & 0.2059267 & 0.41230033 & 0.7082100 & 0.2880309 & 0.9337467 & 0.77597654 & 0.8853603 \\\\\n", "\t 0.165705290 & 0.74011543 & 0.33763606 & 0.1456844 & 0.56672791 & 0.2197435 & 0.1583491 & 0.2270206 & 0.06134143 & 0.2939507 \\\\\n", "\t 0.594905792 & 0.27719153 & 0.37522597 & 0.8297370 & 0.49838097 & 0.3884056 & 0.3239845 & 0.1054112 & 0.80395329 & 0.1680158 \\\\\n", "\t 0.375249445 & 0.84355537 & 0.38782100 & 0.8637450 & 0.70958528 & 0.3343178 & 0.3899539 & 0.6956865 & 0.90822088 & 0.8057296 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| 0.539611001 | 0.43703539 | 0.85709912 | 0.4599631 | 0.97466830 | 0.9150659 | 0.1251427 | 0.1800253 | 0.63296958 | 0.1277790 | \n", "| 0.969200172 | 0.98869122 | 0.45878880 | 0.2725860 | 0.58830241 | 0.7808764 | 0.2056756 | 0.6443141 | 0.82069732 | 0.1994270 | \n", "| 0.161860105 | 0.44683774 | 0.05306833 | 0.3773334 | 0.75579931 | 0.1784268 | 0.3055089 | 0.4147207 | 0.43887943 | 0.6040850 | \n", "| 0.446521448 | 0.54748316 | 0.92775225 | 0.9982479 | 0.54972412 | 0.6394982 | 0.6864430 | 0.9867912 | 0.03091283 | 0.5808925 | \n", "| 0.007107472 | 0.02445618 | 0.35345890 | 0.4459476 | 0.77903144 | 0.4392217 | 0.8644656 | 0.3406485 | 0.56053496 | 0.4633779 | \n", "| 0.963198963 | 0.40298549 | 0.56838054 | 0.8158883 | 0.03108763 | 0.7979690 | 0.6087287 | 0.5747714 | 0.07915931 | 0.4372559 | \n", "| 0.579066600 | 0.34913192 | 0.23066770 | 0.2059267 | 0.41230033 | 0.7082100 | 0.2880309 | 0.9337467 | 0.77597654 | 0.8853603 | \n", "| 0.165705290 | 0.74011543 | 0.33763606 | 0.1456844 | 0.56672791 | 0.2197435 | 0.1583491 | 0.2270206 | 0.06134143 | 0.2939507 | \n", "| 0.594905792 | 0.27719153 | 0.37522597 | 0.8297370 | 0.49838097 | 0.3884056 | 0.3239845 | 0.1054112 | 0.80395329 | 0.1680158 | \n", "| 0.375249445 | 0.84355537 | 0.38782100 | 0.8637450 | 0.70958528 | 0.3343178 | 0.3899539 | 0.6956865 | 0.90822088 | 0.8057296 | \n", "\n", "\n" ], "text/plain": [ " [,1] [,2] [,3] [,4] [,5] [,6] \n", " [1,] 0.539611001 0.43703539 0.85709912 0.4599631 0.97466830 0.9150659\n", " [2,] 0.969200172 0.98869122 0.45878880 0.2725860 0.58830241 0.7808764\n", " [3,] 0.161860105 0.44683774 0.05306833 0.3773334 0.75579931 0.1784268\n", " [4,] 0.446521448 0.54748316 0.92775225 0.9982479 0.54972412 0.6394982\n", " [5,] 0.007107472 0.02445618 0.35345890 0.4459476 0.77903144 0.4392217\n", " [6,] 0.963198963 0.40298549 0.56838054 0.8158883 0.03108763 0.7979690\n", " [7,] 0.579066600 0.34913192 0.23066770 0.2059267 0.41230033 0.7082100\n", " [8,] 0.165705290 0.74011543 0.33763606 0.1456844 0.56672791 0.2197435\n", " [9,] 0.594905792 0.27719153 0.37522597 0.8297370 0.49838097 0.3884056\n", "[10,] 0.375249445 0.84355537 0.38782100 0.8637450 0.70958528 0.3343178\n", " [,7] [,8] [,9] [,10] \n", " [1,] 0.1251427 0.1800253 0.63296958 0.1277790\n", " [2,] 0.2056756 0.6443141 0.82069732 0.1994270\n", " [3,] 0.3055089 0.4147207 0.43887943 0.6040850\n", " [4,] 0.6864430 0.9867912 0.03091283 0.5808925\n", " [5,] 0.8644656 0.3406485 0.56053496 0.4633779\n", " [6,] 0.6087287 0.5747714 0.07915931 0.4372559\n", " [7,] 0.2880309 0.9337467 0.77597654 0.8853603\n", " [8,] 0.1583491 0.2270206 0.06134143 0.2939507\n", " [9,] 0.3239845 0.1054112 0.80395329 0.1680158\n", "[10,] 0.3899539 0.6956865 0.90822088 0.8057296" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x<-matrix(x, 10)\n", "x" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Nous avons maintenant obtenu une matrice de dimension 10X10" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Seed" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Comme dans SAS, nous avons appris comment générer les mêmes variables aléatoires dans un contexte de cumulation par exemple, avec la fonction seed" ] }, { "cell_type": "code", "execution_count": 151, "metadata": { "collapsed": true, "jupyter": { "outputs_hidden": true }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "set.seed(2)" ] }, { "cell_type": "code", "execution_count": 152, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.18488225992769
  2. \n", "\t
  3. 0.702374035958201
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.18488225992769\n", "\\item 0.702374035958201\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.18488225992769\n", "2. 0.702374035958201\n", "\n", "\n" ], "text/plain": [ "[1] 0.1848823 0.7023740" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(2,0,1) " ] }, { "cell_type": "code", "execution_count": 153, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.573326334822923
  2. \n", "\t
  3. 0.168051920365542
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.573326334822923\n", "\\item 0.168051920365542\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.573326334822923\n", "2. 0.168051920365542\n", "\n", "\n" ], "text/plain": [ "[1] 0.5733263 0.1680519" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(2,0,1) " ] }, { "cell_type": "code", "execution_count": 154, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.943839338840917
  2. \n", "\t
  3. 0.943474958650768
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.943839338840917\n", "\\item 0.943474958650768\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.943839338840917\n", "2. 0.943474958650768\n", "\n", "\n" ], "text/plain": [ "[1] 0.9438393 0.9434750" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(2,0,1) " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Si on remet le seed=2, on obtient alors les mêmes valeurs que nous avons obtenues auparavant" ] }, { "cell_type": "code", "execution_count": 159, "metadata": { "collapsed": true, "jupyter": { "outputs_hidden": true }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "set.seed(2)" ] }, { "cell_type": "code", "execution_count": 160, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.18488225992769
  2. \n", "\t
  3. 0.702374035958201
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.18488225992769\n", "\\item 0.702374035958201\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.18488225992769\n", "2. 0.702374035958201\n", "\n", "\n" ], "text/plain": [ "[1] 0.1848823 0.7023740" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(2,0,1) " ] }, { "cell_type": "code", "execution_count": 161, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.573326334822923
  2. \n", "\t
  3. 0.168051920365542
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.573326334822923\n", "\\item 0.168051920365542\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.573326334822923\n", "2. 0.168051920365542\n", "\n", "\n" ], "text/plain": [ "[1] 0.5733263 0.1680519" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(2,0,1) " ] }, { "cell_type": "code", "execution_count": 162, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.943839338840917
  2. \n", "\t
  3. 0.943474958650768
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.943839338840917\n", "\\item 0.943474958650768\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.943839338840917\n", "2. 0.943474958650768\n", "\n", "\n" ], "text/plain": [ "[1] 0.9438393 0.9434750" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "runif(2,0,1) " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Sample (échantillonage)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "La fonction `sample` tire un échantillon aléatoire de $n$ variables à partir d'un ensemble de données allant de $\\left\\{1, \\dots ,N\\right\\}$" ] }, { "cell_type": "code", "execution_count": 168, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 2
  2. \n", "\t
  3. 8
  4. \n", "\t
  5. 7
  6. \n", "\t
  7. 4
  8. \n", "\t
  9. 9
  10. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 2\n", "\\item 8\n", "\\item 7\n", "\\item 4\n", "\\item 9\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 2\n", "2. 8\n", "3. 7\n", "4. 4\n", "5. 9\n", "\n", "\n" ], "text/plain": [ "[1] 2 8 7 4 9" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sample(1:10,5)" ] }, { "cell_type": "code", "execution_count": 169, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.467615901259705
  2. \n", "\t
  3. 0.585986070567742
  4. \n", "\t
  5. 0.318405627040192
  6. \n", "\t
  7. 0.117259352467954
  8. \n", "\t
  9. 0.808955513406545
  10. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.467615901259705\n", "\\item 0.585986070567742\n", "\\item 0.318405627040192\n", "\\item 0.117259352467954\n", "\\item 0.808955513406545\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.467615901259705\n", "2. 0.585986070567742\n", "3. 0.318405627040192\n", "4. 0.117259352467954\n", "5. 0.808955513406545\n", "\n", "\n" ], "text/plain": [ "[1] 0.4676159 0.5859861 0.3184056 0.1172594 0.8089555" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sample(x,5)" ] }, { "cell_type": "code", "execution_count": 170, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.0845668376423419
  2. \n", "\t
  3. 0.693119892384857
  4. \n", "\t
  5. 0.849038900341839
  6. \n", "\t
  7. 0.410260857315734
  8. \n", "\t
  9. 0.884574939031154
  10. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.0845668376423419\n", "\\item 0.693119892384857\n", "\\item 0.849038900341839\n", "\\item 0.410260857315734\n", "\\item 0.884574939031154\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.0845668376423419\n", "2. 0.693119892384857\n", "3. 0.849038900341839\n", "4. 0.410260857315734\n", "5. 0.884574939031154\n", "\n", "\n" ], "text/plain": [ "[1] 0.08456684 0.69311989 0.84903890 0.41026086 0.88457494" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sample(x,5)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "$n\\leq N$" ] }, { "cell_type": "code", "execution_count": 172, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "ename": "ERROR", "evalue": "Error in sample.int(length(x), size, replace, prob): cannot take a sample larger than the population when 'replace = FALSE'\n", "output_type": "error", "traceback": [ "Error in sample.int(length(x), size, replace, prob): cannot take a sample larger than the population when 'replace = FALSE'\nTraceback:\n", "1. sample(x, length(x) + 1)", "2. sample.int(length(x), size, replace, prob)" ] } ], "source": [ "sample(x,length(x)+1)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Lorsque notre échantillon tiré est plus grand que notre ensemble de données, on peut utiliser un tirage avec remise:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# sample(0:1, 100, replace = T)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Cette fonction fonctionne aussi sur un tirage de variable de type caractères" ] }, { "cell_type": "code", "execution_count": 176, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 'Kentucky'
  2. \n", "\t
  3. 'Montana'
  4. \n", "\t
  5. 'Delaware'
  6. \n", "\t
  7. 'Wyoming'
  8. \n", "\t
  9. 'North Carolina'
  10. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 'Kentucky'\n", "\\item 'Montana'\n", "\\item 'Delaware'\n", "\\item 'Wyoming'\n", "\\item 'North Carolina'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 'Kentucky'\n", "2. 'Montana'\n", "3. 'Delaware'\n", "4. 'Wyoming'\n", "5. 'North Carolina'\n", "\n", "\n" ], "text/plain": [ "[1] \"Kentucky\" \"Montana\" \"Delaware\" \"Wyoming\" \n", "[5] \"North Carolina\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sample(state.name, 5)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "La fonction `sample` donne des probabilités égales à tous les éléments tirés d'un ensemble de données. Toutesfois, il est possible de préciser la probabilité de chaque élément tiré." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "s<-sample(1:5, 1000, replace=T, prob=c(.2,.2,.2,.2,.2))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Si on utilise la fonction `table` afin de compter l'occurrence de chaque élément" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "s\n", " 1 2 3 4 5 \n", "222 187 203 183 205 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tableau <- table(s)\n", "tableau" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "on remarque que chaque élément à été tiré à un taux d'environ 20%" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "0.222" ], "text/latex": [ "0.222" ], "text/markdown": [ "0.222" ], "text/plain": [ "[1] 0.222" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tableau[[1]]/sum(tableau)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Si on change les probabilités maintenant, mais **attention** la somme des probabilités doit être égale à 1" ] }, { "cell_type": "code", "execution_count": 188, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "s\n", " 1 2 3 4 5 \n", "197 509 101 87 106 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "s<-sample(1:5, 1000, replace=T, prob=c(.2,.5,.1,.1,.1))\n", "table(s)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## rnorm\n", "La moyenne par défaut est égale à 0 et l'écart-type=1" ] }, { "cell_type": "code", "execution_count": 190, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/html": [ "0.106821263122198" ], "text/latex": [ "0.106821263122198" ], "text/markdown": [ "0.106821263122198" ], "text/plain": [ "[1] 0.1068213" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rnorm(1)" ] }, { "cell_type": "code", "execution_count": 191, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "-24.9130626933775" ], "text/latex": [ "-24.9130626933775" ], "text/markdown": [ "-24.9130626933775" ], "text/plain": [ "[1] -24.91306" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rnorm(1, 0, 100)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Créons un vecteur de 100 valeurs avec moyenne=100 et écart-type=100" ] }, { "cell_type": "code", "execution_count": 192, "metadata": { "collapsed": true, "jupyter": { "outputs_hidden": true }, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "x<-rnorm(100, 0, 100)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Si on calcule la moyenne de ce vecteur;" ] }, { "cell_type": "code", "execution_count": 193, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "-5.83207843041791" ], "text/latex": [ "-5.83207843041791" ], "text/markdown": [ "-5.83207843041791" ], "text/plain": [ "[1] -5.832078" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(x)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Nous avons obtenu une moyenne proche de la moyenne de nos variables aléatoires générées par la fonction `rnorm`" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "La même chose maintenant pour l'écart-type" ] }, { "cell_type": "code", "execution_count": 195, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "93.1100361171955" ], "text/latex": [ "93.1100361171955" ], "text/markdown": [ "93.1100361171955" ], "text/plain": [ "[1] 93.11004" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sd(x)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Toutefois, si nous augmentons le nombre de variables aléatoires généré, nous sommes alors plus proches des arguments de la fonction `rnorm` que nous avons saisie" ] }, { "cell_type": "code", "execution_count": 197, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "0.963181514782263" ], "text/latex": [ "0.963181514782263" ], "text/markdown": [ "0.963181514782263" ], "text/plain": [ "[1] 0.9631815" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x<-rnorm(10000, 0, 100)\n", "mean(x)" ] }, { "cell_type": "code", "execution_count": 198, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "101.228973820731" ], "text/latex": [ "101.228973820731" ], "text/markdown": [ "101.228973820731" ], "text/plain": [ "[1] 101.229" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sd(x)" ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Slideshow", "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "name": "_merged", "toc": { "base_numbering": 1, "nav_menu": { "height": "512px", "width": "252px" }, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": { "height": "596px", "left": "0px", "right": "1017px", "top": "107px", "width": "250px" }, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }