{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercices"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"options(repr.matrix.max.cols=8, repr.matrix.max.rows=5)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"library(dplyr, warn.conflicts = F)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"path<-\"https://raw.githubusercontent.com/nmeraihi/data/master/\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Question 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Importer les données `qc_hommes_2.csv` à partir du répertoire [data github](https://github.com/nmeraihi/data) dans un _data frame_ df"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"age | lx |
\n",
"\n",
"\t0 an | 100000 |
\n",
"\t1 an | 99501 |
\n",
"\t2 ans | 99483 |
\n",
"\t⋮ | ⋮ |
\n",
"\t4 ans | 99454 |
\n",
"\t5 ans | 99442 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" age & lx\\\\\n",
"\\hline\n",
"\t 0 an & 100000\\\\\n",
"\t 1 an & 99501\\\\\n",
"\t 2 ans & 99483\\\\\n",
"\t ⋮ & ⋮\\\\\n",
"\t 4 ans & 99454\\\\\n",
"\t 5 ans & 99442\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"age | lx | \n",
"|---|---|---|---|---|---|\n",
"| 0 an | 100000 | \n",
"| 1 an | 99501 | \n",
"| 2 ans | 99483 | \n",
"| ⋮ | ⋮ | \n",
"| 4 ans | 99454 | \n",
"| 5 ans | 99442 | \n",
"\n",
"\n"
],
"text/plain": [
" age lx \n",
"1 0 an 100000\n",
"2 1 an 99501\n",
"3 2 ans 99483\n",
"⋮ ⋮ ⋮ \n",
"5 4 ans 99454 \n",
"6 5 ans 99442 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"head(df)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" | age | lx |
\n",
"\n",
"\t106 | 105 ans | 96 |
\n",
"\t107 | 106 ans | 51 |
\n",
"\t108 | 107 ans | 26 |
\n",
"\t⋮ | ⋮ | ⋮ |
\n",
"\t110 | 109 ans | 6 |
\n",
"\t111 | 110 ans et plus | 3 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" & age & lx\\\\\n",
"\\hline\n",
"\t106 & 105 ans & 96 \\\\\n",
"\t107 & 106 ans & 51 \\\\\n",
"\t108 & 107 ans & 26 \\\\\n",
"\t⋮ & ⋮ & ⋮\\\\\n",
"\t110 & 109 ans & 6 \\\\\n",
"\t111 & 110 ans et plus & 3 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| | age | lx | \n",
"|---|---|---|---|---|---|\n",
"| 106 | 105 ans | 96 | \n",
"| 107 | 106 ans | 51 | \n",
"| 108 | 107 ans | 26 | \n",
"| ⋮ | ⋮ | ⋮ | \n",
"| 110 | 109 ans | 6 | \n",
"| 111 | 110 ans et plus | 3 | \n",
"\n",
"\n"
],
"text/plain": [
" age lx\n",
"106 105 ans 96\n",
"107 106 ans 51\n",
"108 107 ans 26\n",
"⋮ ⋮ ⋮ \n",
"110 109 ans 6 \n",
"111 110 ans et plus 3 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tail(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dans la colonne `age`, garder seulement la partite numérique. Vous devriez alors obtenir age={0,1,2 ...}"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"age | lx |
\n",
"\n",
"\t0 | 100000 |
\n",
"\t1 | 99501 |
\n",
"\t2 | 99483 |
\n",
"\t⋮ | ⋮ |
\n",
"\t4 | 99454 |
\n",
"\t5 | 99442 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" age & lx\\\\\n",
"\\hline\n",
"\t 0 & 100000\\\\\n",
"\t 1 & 99501\\\\\n",
"\t 2 & 99483\\\\\n",
"\t ⋮ & ⋮\\\\\n",
"\t 4 & 99454\\\\\n",
"\t 5 & 99442\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"age | lx | \n",
"|---|---|---|---|---|---|\n",
"| 0 | 100000 | \n",
"| 1 | 99501 | \n",
"| 2 | 99483 | \n",
"| ⋮ | ⋮ | \n",
"| 4 | 99454 | \n",
"| 5 | 99442 | \n",
"\n",
"\n"
],
"text/plain": [
" age lx \n",
"1 0 100000\n",
"2 1 99501\n",
"3 2 99483\n",
"⋮ ⋮ ⋮ \n",
"5 4 99454 \n",
"6 5 99442 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"head(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## c)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À ce df, ajouter une nouvelle colonne `dx` (nombre de décès entre l'âge x et x+n). Donc dx est le nombre de décès qui surviennent dans chaque intervalle d'âge au sein d'une cohorte initiale de 100 000 naissances vivantes à l'âge 0."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$d_x=l_x -l_{x+1}$$"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"age | lx | dx |
\n",
"\n",
"\t0 | 100000 | 499 |
\n",
"\t1 | 99501 | 18 |
\n",
"\t2 | 99483 | 16 |
\n",
"\t⋮ | ⋮ | ⋮ |
\n",
"\t4 | 99454 | 12 |
\n",
"\t5 | 99442 | 11 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lll}\n",
" age & lx & dx\\\\\n",
"\\hline\n",
"\t 0 & 100000 & 499 \\\\\n",
"\t 1 & 99501 & 18 \\\\\n",
"\t 2 & 99483 & 16 \\\\\n",
"\t ⋮ & ⋮ & ⋮\\\\\n",
"\t 4 & 99454 & 12 \\\\\n",
"\t 5 & 99442 & 11 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"age | lx | dx | \n",
"|---|---|---|---|---|---|\n",
"| 0 | 100000 | 499 | \n",
"| 1 | 99501 | 18 | \n",
"| 2 | 99483 | 16 | \n",
"| ⋮ | ⋮ | ⋮ | \n",
"| 4 | 99454 | 12 | \n",
"| 5 | 99442 | 11 | \n",
"\n",
"\n"
],
"text/plain": [
" age lx dx \n",
"1 0 100000 499\n",
"2 1 99501 18\n",
"3 2 99483 16\n",
"⋮ ⋮ ⋮ ⋮ \n",
"5 4 99454 12 \n",
"6 5 99442 11 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"head(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## d)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculer qx (quotient de mortalité entre l'âge x et x+n). Donc qx est probabilité qu'un individu d'âge x décède avant d'atteindre l'âge x+n."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$q_x=\\frac{d_x}{l_x}$$"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"age | lx | dx | qx |
\n",
"\n",
"\t0 | 100000 | 499 | 0.00499 |
\n",
"\t1 | 99501 | 18 | 0.00018 |
\n",
"\t2 | 99483 | 16 | 0.00016 |
\n",
"\t⋮ | ⋮ | ⋮ | ⋮ |
\n",
"\t4 | 99454 | 12 | 0.00012 |
\n",
"\t5 | 99442 | 11 | 0.00011 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|llll}\n",
" age & lx & dx & qx\\\\\n",
"\\hline\n",
"\t 0 & 100000 & 499 & 0.00499\\\\\n",
"\t 1 & 99501 & 18 & 0.00018\\\\\n",
"\t 2 & 99483 & 16 & 0.00016\\\\\n",
"\t ⋮ & ⋮ & ⋮ & ⋮\\\\\n",
"\t 4 & 99454 & 12 & 0.00012\\\\\n",
"\t 5 & 99442 & 11 & 0.00011\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"age | lx | dx | qx | \n",
"|---|---|---|---|---|---|\n",
"| 0 | 100000 | 499 | 0.00499 | \n",
"| 1 | 99501 | 18 | 0.00018 | \n",
"| 2 | 99483 | 16 | 0.00016 | \n",
"| ⋮ | ⋮ | ⋮ | ⋮ | \n",
"| 4 | 99454 | 12 | 0.00012 | \n",
"| 5 | 99442 | 11 | 0.00011 | \n",
"\n",
"\n"
],
"text/plain": [
" age lx dx qx \n",
"1 0 100000 499 0.00499\n",
"2 1 99501 18 0.00018\n",
"3 2 99483 16 0.00016\n",
"⋮ ⋮ ⋮ ⋮ ⋮ \n",
"5 4 99454 12 0.00012\n",
"6 5 99442 11 0.00011"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"head(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## e)\n",
"Maintenant que vous avez toutes les données, on peut calculer la probabilité qu'un individu d'âge x survive jusqu'à l'âge x+n."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$tP_x=\\frac{l_{x+t}}{l_x}$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculer la probabilité qu'un individu de 22 ans survive les trois prochaines années"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"0.998192831903079"
],
"text/latex": [
"0.998192831903079"
],
"text/markdown": [
"0.998192831903079"
],
"text/plain": [
"[1] 0.9981928"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"library(formattable)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"99.82%"
],
"text/latex": [
"99.82\\%"
],
"text/markdown": [
"99.82%"
],
"text/plain": [
"[1] 99.82%"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"percent(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Question 2"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Avec les données suivantes;"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"Id | Age |
\n",
"\n",
"\t1 | 14 |
\n",
"\t2 | 12 |
\n",
"\t3 | 15 |
\n",
"\t4 | 10 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" Id & Age\\\\\n",
"\\hline\n",
"\t 1 & 14\\\\\n",
"\t 2 & 12\\\\\n",
"\t 3 & 15\\\\\n",
"\t 4 & 10\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"Id | Age | \n",
"|---|---|---|---|\n",
"| 1 | 14 | \n",
"| 2 | 12 | \n",
"| 3 | 15 | \n",
"| 4 | 10 | \n",
"\n",
"\n"
],
"text/plain": [
" Id Age\n",
"1 1 14 \n",
"2 2 12 \n",
"3 3 15 \n",
"4 4 10 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df1"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"Id | Sex | Code |
\n",
"\n",
"\t1 | F | a |
\n",
"\t2 | M | b |
\n",
"\t3 | M | c |
\n",
"\t4 | F | d |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lll}\n",
" Id & Sex & Code\\\\\n",
"\\hline\n",
"\t 1 & F & a\\\\\n",
"\t 2 & M & b\\\\\n",
"\t 3 & M & c\\\\\n",
"\t 4 & F & d\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"Id | Sex | Code | \n",
"|---|---|---|---|\n",
"| 1 | F | a | \n",
"| 2 | M | b | \n",
"| 3 | M | c | \n",
"| 4 | F | d | \n",
"\n",
"\n"
],
"text/plain": [
" Id Sex Code\n",
"1 1 F a \n",
"2 2 M b \n",
"3 3 M c \n",
"4 4 F d "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Créer un _data frame_ `M` qui fait une jointure de `df1` et `df2`"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"Id | Age | Sex | Code |
\n",
"\n",
"\t1 | 14 | F | a |
\n",
"\t2 | 12 | M | b |
\n",
"\t3 | 15 | M | c |
\n",
"\t4 | 10 | F | d |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|llll}\n",
" Id & Age & Sex & Code\\\\\n",
"\\hline\n",
"\t 1 & 14 & F & a \\\\\n",
"\t 2 & 12 & M & b \\\\\n",
"\t 3 & 15 & M & c \\\\\n",
"\t 4 & 10 & F & d \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"Id | Age | Sex | Code | \n",
"|---|---|---|---|\n",
"| 1 | 14 | F | a | \n",
"| 2 | 12 | M | b | \n",
"| 3 | 15 | M | c | \n",
"| 4 | 10 | F | d | \n",
"\n",
"\n"
],
"text/plain": [
" Id Age Sex Code\n",
"1 1 14 F a \n",
"2 2 12 M b \n",
"3 3 15 M c \n",
"4 4 10 F d "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ...\n",
"M"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Question 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Selon un [journaliste de la CNBC](https://www.cnbc.com/video/3000418698), le prix de l'action de Apple [(AAPL)](https://ca.finance.yahoo.com/quote/AAPL/history?p=AAPL) est très corrélé avec le prix de l'action de [Boeing Co (BA)](https://ca.finance.yahoo.com/quote/BA/history?p=BA). \n",
"\n",
"Calculer la corrélation des prix Adj Close **mensuels** de ces deux compagnies sur la période allant du 2016-11-01 au 2017-10-01.\n",
"\n",
"**Indice:** créer deux vecteurs avec les valeurs des prix. Vous pouvez importer les données à partir de [finance yahoo](https://ca.finance.yahoo.com/) dans la section _Historical Data_ avec les dates et périodes indiquées ci-haut."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" | Apple | Boeing |
\n",
"\n",
"\tApple | 1.000000 | 0.872264 |
\n",
"\tBoeing | 0.872264 | 1.000000 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" & Apple & Boeing\\\\\n",
"\\hline\n",
"\tApple & 1.000000 & 0.872264\\\\\n",
"\tBoeing & 0.872264 & 1.000000\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| | Apple | Boeing | \n",
"|---|---|\n",
"| Apple | 1.000000 | 0.872264 | \n",
"| Boeing | 0.872264 | 1.000000 | \n",
"\n",
"\n"
],
"text/plain": [
" Apple Boeing \n",
"Apple 1.000000 0.872264\n",
"Boeing 0.872264 1.000000"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cor(a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Question 4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Créer un _data frame_ avec les données [HackerRank-Developer-Survey](https://raw.githubusercontent.com/nmeraihi/data/master/HackerRank-Developer-Survey-2018-Values.csv). Dans ces données, vous trouvez une série de réponses que les développeurs de [HackerRank](https://www.hackerrank.com/) ont répondues suite à un sondage ayant pour but de comprendre les l'intérêts des femmes envers la programmation informatique."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"RespondentID | StartDate | EndDate | CountryNumeric2 | ⋯ | q34PositiveExp | q34IdealLengHackerRankTest | q0035_other | q36Level4 |
\n",
"\n",
"\t6464453728 | 10/19/17 11:51 | 10/20/17 12:05 | South Korea | ⋯ | NA | #NULL! | | Queue |
\n",
"\t6478031510 | 10/26/17 6:18 | 10/26/17 7:49 | Ukraine | ⋯ | NA | #NULL! | | Queue |
\n",
"\t6464392829 | 10/19/17 10:44 | 10/19/17 10:56 | Malaysia | ⋯ | NA | #NULL! | | Queue |
\n",
"\t⋮ | ⋮ | ⋮ | ⋮ | ⋱ | ⋮ | ⋮ | ⋮ | ⋮ |
\n",
"\t6488385057 | 10/31/17 11:46 | 10/31/17 11:59 | | ⋯ | NA | #NULL! | | Hashmap |
\n",
"\t6463843138 | 10/19/17 3:02 | 10/19/17 3:18 | United States | ⋯ | NA | #NULL! | | Queue |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll}\n",
" RespondentID & StartDate & EndDate & CountryNumeric2 & ⋯ & q34PositiveExp & q34IdealLengHackerRankTest & q0035\\_other & q36Level4\\\\\n",
"\\hline\n",
"\t 6464453728 & 10/19/17 11:51 & 10/20/17 12:05 & South Korea & ⋯ & NA & \\#NULL! & & Queue \\\\\n",
"\t 6478031510 & 10/26/17 6:18 & 10/26/17 7:49 & Ukraine & ⋯ & NA & \\#NULL! & & Queue \\\\\n",
"\t 6464392829 & 10/19/17 10:44 & 10/19/17 10:56 & Malaysia & ⋯ & NA & \\#NULL! & & Queue \\\\\n",
"\t ⋮ & ⋮ & ⋮ & ⋮ & ⋱ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n",
"\t 6488385057 & 10/31/17 11:46 & 10/31/17 11:59 & & ⋯ & NA & \\#NULL! & & Hashmap \\\\\n",
"\t 6463843138 & 10/19/17 3:02 & 10/19/17 3:18 & United States & ⋯ & NA & \\#NULL! & & Queue \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"RespondentID | StartDate | EndDate | CountryNumeric2 | ⋯ | q34PositiveExp | q34IdealLengHackerRankTest | q0035_other | q36Level4 | \n",
"|---|---|---|---|---|---|\n",
"| 6464453728 | 10/19/17 11:51 | 10/20/17 12:05 | South Korea | ⋯ | NA | #NULL! | | Queue | \n",
"| 6478031510 | 10/26/17 6:18 | 10/26/17 7:49 | Ukraine | ⋯ | NA | #NULL! | | Queue | \n",
"| 6464392829 | 10/19/17 10:44 | 10/19/17 10:56 | Malaysia | ⋯ | NA | #NULL! | | Queue | \n",
"| ⋮ | ⋮ | ⋮ | ⋮ | ⋱ | ⋮ | ⋮ | ⋮ | ⋮ | \n",
"| 6488385057 | 10/31/17 11:46 | 10/31/17 11:59 | | ⋯ | NA | #NULL! | | Hashmap | \n",
"| 6463843138 | 10/19/17 3:02 | 10/19/17 3:18 | United States | ⋯ | NA | #NULL! | | Queue | \n",
"\n",
"\n"
],
"text/plain": [
" RespondentID StartDate EndDate CountryNumeric2 ⋯ q34PositiveExp\n",
"1 6464453728 10/19/17 11:51 10/20/17 12:05 South Korea ⋯ NA \n",
"2 6478031510 10/26/17 6:18 10/26/17 7:49 Ukraine ⋯ NA \n",
"3 6464392829 10/19/17 10:44 10/19/17 10:56 Malaysia ⋯ NA \n",
"⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ \n",
"5 6488385057 10/31/17 11:46 10/31/17 11:59 ⋯ NA \n",
"6 6463843138 10/19/17 3:02 10/19/17 3:18 United States ⋯ NA \n",
" q34IdealLengHackerRankTest q0035_other q36Level4\n",
"1 #NULL! Queue \n",
"2 #NULL! Queue \n",
"3 #NULL! Queue \n",
"⋮ ⋮ ⋮ ⋮ \n",
"5 #NULL! Hashmap \n",
"6 #NULL! Queue "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"head(values)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En utilisant le package `dplyr`, faites un petit tableau qui donne la proportion des hommes et des femmes dans ce _dataset_. \n",
"\n",
"Utilisez la variable `q3Gender`"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"q3Gender | n |
\n",
"\n",
"\tFemale | 16.55688 |
\n",
"\tMale | 83.44312 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" q3Gender & n\\\\\n",
"\\hline\n",
"\t Female & 16.55688\\\\\n",
"\t Male & 83.44312\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"q3Gender | n | \n",
"|---|---|\n",
"| Female | 16.55688 | \n",
"| Male | 83.44312 | \n",
"\n",
"\n"
],
"text/plain": [
" q3Gender n \n",
"1 Female 16.55688\n",
"2 Male 83.44312"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"values_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En utilisant le package `dplyr`, faites un tableau qui donne la proportion des hommes et des femmes en les séparant par le fait qu'ils soient étudiants ou non. \n",
"\n",
"Utilisez les variables `q3Gender`, `is_student` et `q8Student`"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"q3Gender | is_student | n |
\n",
"\n",
"\tFemale | No | 20.82685 |
\n",
"\tFemale | Yes | 13.55364 |
\n",
"\tMale | No | 79.17315 |
\n",
"\tMale | Yes | 86.44636 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lll}\n",
" q3Gender & is\\_student & n\\\\\n",
"\\hline\n",
"\t Female & No & 20.82685\\\\\n",
"\t Female & Yes & 13.55364\\\\\n",
"\t Male & No & 79.17315\\\\\n",
"\t Male & Yes & 86.44636\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"q3Gender | is_student | n | \n",
"|---|---|---|---|\n",
"| Female | No | 20.82685 | \n",
"| Female | Yes | 13.55364 | \n",
"| Male | No | 79.17315 | \n",
"| Male | Yes | 86.44636 | \n",
"\n",
"\n"
],
"text/plain": [
" q3Gender is_student n \n",
"1 Female No 20.82685\n",
"2 Female Yes 13.55364\n",
"3 Male No 79.17315\n",
"4 Male Yes 86.44636"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## c)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dresser un tableau qui donne le nombre de répondants par pays (utilisez la variable `CountryNumeric2`)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"CountryNumeric2 | n |
\n",
"\n",
"\t | 3991 |
\n",
"\tAfghanistan | 3 |
\n",
"\tAlbania | 8 |
\n",
"\t⋮ | ⋮ |
\n",
"\tAmerican Samoa | 1 |
\n",
"\tAndorra | 1 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" CountryNumeric2 & n\\\\\n",
"\\hline\n",
"\t & 3991 \\\\\n",
"\t Afghanistan & 3 \\\\\n",
"\t Albania & 8 \\\\\n",
"\t ⋮ & ⋮\\\\\n",
"\t American Samoa & 1 \\\\\n",
"\t Andorra & 1 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"CountryNumeric2 | n | \n",
"|---|---|---|---|---|---|\n",
"| | 3991 | \n",
"| Afghanistan | 3 | \n",
"| Albania | 8 | \n",
"| ⋮ | ⋮ | \n",
"| American Samoa | 1 | \n",
"| Andorra | 1 | \n",
"\n",
"\n"
],
"text/plain": [
" CountryNumeric2 n \n",
"1 3991\n",
"2 Afghanistan 3\n",
"3 Albania 8\n",
"⋮ ⋮ ⋮ \n",
"5 American Samoa 1 \n",
"6 Andorra 1 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## d)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Faites un tableau qui donne le nombre de répondants en les classant par le diplôme obtenu. \n",
"\n",
"Utilisez la variable `q4Education`"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"q4Education | Total |
\n",
"\n",
"\tCollege graduate | 12010 |
\n",
"\tPost graduate degree (Masters, PhD) | 6030 |
\n",
"\tSome college | 2499 |
\n",
"\t⋮ | ⋮ |
\n",
"\t#NULL! | 305 |
\n",
"\tVocational training (like bootcamp) | 148 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" q4Education & Total\\\\\n",
"\\hline\n",
"\t College graduate & 12010 \\\\\n",
"\t Post graduate degree (Masters, PhD) & 6030 \\\\\n",
"\t Some college & 2499 \\\\\n",
"\t ⋮ & ⋮\\\\\n",
"\t \\#NULL! & 305 \\\\\n",
"\t Vocational training (like bootcamp) & 148 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"q4Education | Total | \n",
"|---|---|---|---|---|---|\n",
"| College graduate | 12010 | \n",
"| Post graduate degree (Masters, PhD) | 6030 | \n",
"| Some college | 2499 | \n",
"| ⋮ | ⋮ | \n",
"| #NULL! | 305 | \n",
"| Vocational training (like bootcamp) | 148 | \n",
"\n",
"\n"
],
"text/plain": [
" q4Education Total\n",
"1 College graduate 12010\n",
"2 Post graduate degree (Masters, PhD) 6030\n",
"3 Some college 2499\n",
"⋮ ⋮ ⋮ \n",
"7 #NULL! 305 \n",
"8 Vocational training (like bootcamp) 148 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## e)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Faites un tableau qui donne le nombre de développeurs par catégorie d'âge.\n",
"\n",
"Utilisez la variable `q1AgeBeginCoding`"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"q1AgeBeginCoding | Total |
\n",
"\n",
"\t16 - 20 years old | 14293 |
\n",
"\t11 - 15 years old | 5264 |
\n",
"\t21 - 25 years old | 3626 |
\n",
"\t⋮ | ⋮ |
\n",
"\t#NULL! | 30 |
\n",
"\t50+ years or older | 8 |
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" q1AgeBeginCoding & Total\\\\\n",
"\\hline\n",
"\t 16 - 20 years old & 14293 \\\\\n",
"\t 11 - 15 years old & 5264 \\\\\n",
"\t 21 - 25 years old & 3626 \\\\\n",
"\t ⋮ & ⋮\\\\\n",
"\t \\#NULL! & 30 \\\\\n",
"\t 50+ years or older & 8 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"q1AgeBeginCoding | Total | \n",
"|---|---|---|---|---|---|\n",
"| 16 - 20 years old | 14293 | \n",
"| 11 - 15 years old | 5264 | \n",
"| 21 - 25 years old | 3626 | \n",
"| ⋮ | ⋮ | \n",
"| #NULL! | 30 | \n",
"| 50+ years or older | 8 | \n",
"\n",
"\n"
],
"text/plain": [
" q1AgeBeginCoding Total\n",
"1 16 - 20 years old 14293\n",
"2 11 - 15 years old 5264\n",
"3 21 - 25 years old 3626\n",
"⋮ ⋮ ⋮ \n",
"9 #NULL! 30 \n",
"10 50+ years or older 8 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "4.1.2"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
},
"toc": {
"base_numbering": 1,
"nav_menu": {
"height": "174px",
"width": "252px"
},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": "block",
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 4
}