Exercices¶
Laboratoires et exercices ISLR¶
Dans le manuel An introduction to statistical learning [JWHT13], vous pouvez faire les exercices suivants;
Laboratoires chap#3¶
3.6.1 Libraries
3.6.2 Simple Linear Regression
3.6.3 Multiple Linear Regression
3.6.4 Interaction Terms
3.6.5 Non-linear Transformations of the Predictors
3.6.6 Qualitative Predictors
3.6.7 Writing Functions
Laboratoires chap#4¶
4.7.1 The Stock Market Data
4.7.2 Logistic Regression
4.7.7 Poisson Regression
Exercices ISLR chap#3¶
1-3-8-12-13-14
Exercices ISLR chap#4¶
6-7-13(a-b-c-d)- 14(a-b-c-f)- 16 (juste la régression logistique)
Exercice 1¶
Soit les données suivantes
Period |
y |
x_(1) |
x_(2) |
|---|---|---|---|
1 |
1.3 |
6 |
4.5 |
2 |
1.5 |
7 |
4.6 |
3 |
1.8 |
7 |
4.5 |
4 |
1.6 |
8 |
4.7 |
5 |
1.7 |
8 |
4.6 |
En utilisant le modèle de regression suivant pour \(i=1,2, \dots 5\) ; $\( y_i=\beta_{0}+\beta_{1} x_{i1}+\beta_{2} x_{i2}+\varepsilon_{i} \)$
et \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\)
Calculer \(\hat{\varepsilon}_{2}\);
Exercice 2¶
Vous ajuster le modèle \(y_i=\beta_{0}+\beta_{1} x_{i1}+\beta_{2} x_{i2}+\beta_{3} x_{i3}+\varepsilon_{i} \) sur les données suivantes:
\(y\) |
\(x_1\) |
\(x_2\) |
\(x_3\) |
|---|---|---|---|
8 |
1 |
1 |
0 |
7 |
0 |
0 |
1 |
6 |
1 |
0 |
0 |
8 |
1 |
1 |
1 |
9 |
0 |
0 |
0 |
3 |
0 |
1 |
1 |
Après avoir calcuer \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\), vous obtenez;
Calculer \(\hat{\beta}_1\)
Solution 1¶
x_1 <- c(6,7,7,8,8)
x_2 <- c(4.5,4.6,4.5,4.7,4.6)
X <- cbind(Intercept = 1, x_1,x_2)
print(X)
Intercept x_1 x_2
[1,] 1 6 4.5
[2,] 1 7 4.6
[3,] 1 7 4.5
[4,] 1 8 4.7
[5,] 1 8 4.6
y <- c(1.3,1.5,1.8,1.6,1.7)
sum(c(1,1,1,1,1)*y)
sum(x_1*y)
sum(x_2*y)
print(t(cbind(sum(c(1,1,1,1,1)*y),
sum(x_1*y),
sum(x_2*y))))
[,1]
[1,] 7.90
[2,] 57.30
[3,] 36.19
print(t(X) %*% y)
[,1]
Intercept 7.90
x_1 57.30
x_2 36.19
XX_1 <- matrix(c(1522.73, 26.87,-374.67,
26.87,0.93,-7.33,
-374.67,-7.33,93.33)
,nrow = 3, byrow =T)
print(XX_1)
[,1] [,2] [,3]
[1,] 1522.73 26.87 -374.67
[2,] 26.87 0.93 -7.33
[3,] -374.67 -7.33 93.33
print(XX_1 %*% (t(X) %*% y))
[,1]
[1,] 9.9107
[2,] 0.2893
[3,] -2.2893
Solution 2¶
y <- c(5,3,10,4,3,5)
x_1 <- c(0,1,0,1,0,1)
x_2 <- c(1,0,1,1,0,1)
x_3 <- c(0,1,1,0,0,0)
X <- cbind(Intercept = 1, x_1,x_2,x_3)
X
t(X)
t(X)%*%y
XX_1 <- (1/30)*matrix(c(26,-10,-18,-12,
-10,20,0,0,
-18,0,24,6,
-12,0,6,24),
nrow = 4, byrow =T)
XX_1
beta_i <- XX_1%*% (t(X) %*% y)
beta_1 <- beta_i[2]
beta_1
print(XX_1%*% (t(X) %*% y))
donne=data.frame(cbind(y,X))
reg_model <- lm(y ~ x_1 + x_2 + x_3, data = donne)
reg_model$coefficients
| Intercept | x_1 | x_2 | x_3 |
|---|---|---|---|
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 |
| Intercept | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|
| x_1 | 0 | 1 | 0 | 1 | 0 | 1 |
| x_2 | 1 | 0 | 1 | 1 | 0 | 1 |
| x_3 | 0 | 1 | 1 | 0 | 0 | 0 |
| Intercept | 30 |
|---|---|
| x_1 | 12 |
| x_2 | 24 |
| x_3 | 13 |
| 0.8666667 | -0.3333333 | -0.6 | -0.4 |
| -0.3333333 | 0.6666667 | 0.0 | 0.0 |
| -0.6000000 | 0.0000000 | 0.8 | 0.2 |
| -0.4000000 | 0.0000000 | 0.2 | 0.8 |
[,1]
[1,] 2.4
[2,] -2.0
[3,] 3.8
[4,] 3.2
- (Intercept)
- 2.4
- x_1
- -2
- x_2
- 3.8
- x_3
- 3.2
- JWHT13
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning. Volume 112. Springer, 2013.